

Target: I can name strong acids and bases, and can explain the connection between the self ionization of water and pH

Link to YouTube Presentation: https://youtu.be/flhNYTAmgYk

Acid Nomenclature

Binary acid:

Hydrogen + highly electronegative element

Steps to Name:

- 1) Begins with hydro
- 2) Add the root of the other element
- 3) Add –ic
- 4) + acid

HBr Hydrobromic acid

HCI Hydrochloric acid

Hydroiodic acid

Acid Nomenclature

Oxyacids:

Hydrogen + oxygen + a third element

Steps To Name:

- Begins with Root of ion (not H or O) (sometimes starts with per- or hypo-)
- 2) Add –ic, or -ous
- 3) + acid

Oxyacids Continued...

Names change a little depending on how many oxygens the anion comes with...

Anion ends with **–ate** → change ending to **–ic**Anion ends with **–ite** → change ending to **–ous**Anion has **extra O than –ate** → start with **Per**Anion has **fewer O than –ite** → start with **Hypo-**

Oxyacids Continued...

CIO⁻ less O version \rightarrow Hypochlorous Acid
CIO₂⁻ -ite version \rightarrow Chlorous Acid
CIO₃⁻ -ate version \rightarrow Chloric Acid

CIO₄- more O version → Perchloric Acid

Some names are a little off to make them sound better, easier to say:

Remember...

Phosphoric acid...not Phosphic acid Sulfuric acid...not Sulfic acid

When writing formulas make them neutral! That is how you know how many hydrogens it has!

$$H^+$$
 (CO₃)²⁻ \rightarrow H_2 (CO₃)

They get weird really fast...

Focus on the patterns, just get used to the weird ones...

Naming Acids

HF H₂S **Hydrosulfuric** Hydrofluoric acid acid HNO₂ H₂SO₄ **Nitrous Acid** Sulfuric acid

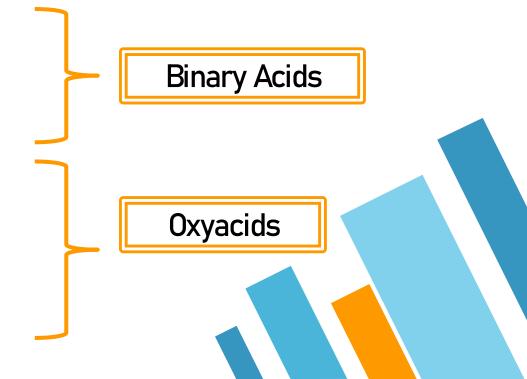
HNO₃
Nitric acid

Strong Acids and Bases

STRONG?

They dissociate "completely"

HCI → H+ CI-


HCl is a strong acid so LOTS of ions in solution!

Strong Acids and Bases are the easy ones...assuming the dissociate completely makes our math easier ©

MEMORIZE! The Seven Strong Acids

- 1) HCI Hydrochloric Acid
- 2) HBr Hydrobromic Acid
- 3) HI Hydriodic Acid
- 4) H₂SO₄ Sulfuric Acid
- 5) HNO₃ Nitric Acid
- 6) HClO₄ Perchloric Acid
- **7)** HCIO₃ Chloric Acid

MEMORIZE!

The Eight Strong Bases

They are all hydroxides!

- 1) LiOH Lithium Hydroxide
- 2) NaOH Sodium Hydroxide
- 3) KOH Potassium Hydroxide
- 4) RbOH Rubidium Hydroxide
- 5) CsOH Cesium Hydroxide
- **6)** $Ca(OH)_2 Calcium Hydroxide$
- **7)** $Sr(OH)_2 Strontium Hydroxide$
- 8) $Ba(OH)_2 Barium Hydroxide$

Alkaline Metals

Alkali Metals

Mer

Neutralization Reactions

What happens when you mix a strong acid and strong base?

Acid + Base → Water + Ionic Salt

$$HCI + NaOH \rightarrow H_2O + NaCI$$

 $H_2SO_4 + 2KOH \rightarrow 2H_2O + K_2SO_4$

Why is the pH of H₂O equal to 7?

Because water dissociates! It "self ionizes" – not much...but it does!

$$H_2O_{(l)} + H_2O_{(l)} \leftrightarrow H_3O_{(aq)}^+ + OH_{(aq)}^-$$

 $Conj. Acid + Conj. Base$

Back to Equilibrium Chapter!

$$H_2O_{(l)} + H_2O_{(l)} \leftrightarrow H_3O_{(aq)}^+ + OH_{(aq)}^-$$

 $Conj. Acid + Conj. Base$

pH is a measure of ion concentration...

Dissociation is a reversible reaction...

So how do we find the [] of ions at equilibrium????

Equilibrium expressions!

What is the equilibrium expression for water?

$$H_2O_{(l)} + H_2O_{(l)} \leftrightarrow H_3O_{(aq)}^+ + OH_{(aq)}^-$$

 $\mathbf{K_w} = [\mathbf{H_3O^+}][\mathbf{OH^-}]$

Remember!

Pure liquids aren't included in equilibrium expressions!

 $[H_3O^+]$ and $[OH^-]$ are both equal to 1.0×10^{-7} M at 25° C.

$$K_{w} = [H_{3}O^{+}][OH^{-}]$$

$$1.0 \times 10^{-14} = [1.0 \times 10^{-7}] \times [1.0 \times 10^{-7}]$$

$$K_{w} = [H_{3}O^{+}][OH^{-}]$$

1.0x10⁻¹⁴ = [1.0x10⁻⁷] x [1.0x10⁻⁷]

The concentration of [H₃O⁺] and [OH⁻] are equal... **So it is neutral!**

Also - The pH and the pOH of any aqueous solution are related through the K_w . That's why if you know one you can find the other! And why they add to 14…look at the exponents!

TABLE 8-1	Temperature Dependence of $K_{\!\scriptscriptstyle W}$	
Temperature (°	C) K _w	
0	0.114×10^{-14}	
10	0.292×10^{-14}	
20	0.681×10^{-14}	
25	1.01×10^{-14}	
30	1.47×10^{-14}	
40	2.92×10^{-14}	
50	5.47×10^{-14}	
60	9.61×10^{-14}	

Temperature Dependent

The Kw changes based on temperature. In our practice problems we are always assuming it is at 25°C unless told otherwise

TABLE 8-1	Temperature Dependence of $K_{\!\scriptscriptstyle W}$	
Temperature (°C)		K _w
0		0.114×10^{-14}
10		0.292×10^{-14}
20		0.681×10^{-14}
25		1.01×10^{-14}
30		1.47×10^{-14}
40		2.92×10^{-14}
50		5.47×10^{-14}
60		9.61×10^{-14}

<u>THINK!</u>

pH of water decreases as temperature increases <u>BUT</u> that does <u>not</u> mean it is "acidic" – there is STILL [H+] = [OH-], it's just that the number we call "neutral" and the concentrations of ions at that temp is different than when at 25°C, pH 7. <u>A neutral pH is only 7 at 25°!!!</u>

K_w Calculations

What is the [H+] in an aqueous solution with a hydroxide ion concentration of 0.001 M at 25 °C?

(BTW...THIS ONLY WORKS FOR AQUEOUS AT 25 °C)

$$K_{w} = [H^{+}][OH^{-}]$$

$$1.0 \times 10^{-14} = [1.0 \times 10^{-3}] [H^{+}]$$

$$[H^+] = 1 \times 10^{-11} M$$

Video on Dissociation of Water

https://youtu.be/Xeuyc55LqiY

Fun way to remember MOST of the strong/weak Acids/Bases

Careful...it doesn't have ALL of them!

https://youtu.be/onGDi1KKjdM

Missing:

RbOH and CsOH

They are not as common so some people leave them off...

A good recap video – Crash Course

https://youtu.be/LS67vS10O5Y

A video about "buffers" and Acid Rain if interested...

https://youtu.be/8Fdt5WnYn1k

YouTube Link to Presentation

https://youtu.be/flhNYTAmgYk